Neutron Star

A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star after a supernova. Neutron stars are the densest and smallest stars known to exist in the universe; with a radius of only about 12–13 km (6 mi), they can have a mass of about two Suns.



Neutron stars are composed almost entirely of neutrons, which are subatomic particles without net electrical charge and with slightly larger mass than protons. Neutron stars are very hot and are supported against further collapse by quantum degeneracy pressure due to the phenomenon described by the Pauli exclusion principle. This principle states that no two neutrons (or any other fermionic particles) can occupy the same place and quantum state simultaneously.



Some neutron stars rotate very rapidly (up to 716 times a second, or approximately 43,000 revolutions per minute) and emit beams of electromagnetic radiation as pulsar. Indeed, the discovery of pulsars in 1967 first suggested that neutron stars exist. Gamma-ray bursts may be produced from rapidly rotating, high-mass stars that collapse to form a neutron star, or from the merger of binary neutron stars. There are thought to be on the order of 108 neutron stars in the galaxy, but they can only be easily detected in certain instances, such as if they are a pulsar or part of a binary system. Non-rotating and non-accreting neutron stars are virtually undetectable; however, the Hubble Space Telescope has observed one thermally radiating neutron star, called RX J185635-3754.

More Articles:








No comments:

Post a Comment